Calibration and validation of likelihood-ratio systems

Geoffrey Stewart Morrison

Forensic Data Science Laboratory
Aston Institute for Forensic Linguistics
Slides

- http://geoff-morrison.net/#EAFS_2022

Disclaimer

- All opinions expressed are those of the presenter and, unless explicitly stated otherwise, should not be construed as representing the policies or positions of any organizations with which the presenter is associated.
Recommended reading

Later today (1 June 2022)

- 12:00–12:20 NL-451
 Basu N., Bolton-King R.S., Morrison G.S.
 Feature-based calculation of likelihood ratios for forensic comparison of fired cartridge cases

- 13:35–14:05 NL-453 Keynote Presentation
 Morrison G.S.
 Advancing a paradigm shift in evaluation of forensic evidence: The rise of forensic data science

- 15:55–16:15 NL-453
 Validation of the alpha version of the E³ forensic speech science system (E³FS³) core software tools
Contents

• Preliminaries
 • Black boxes
 • Logarithms
 • Likelihood ratios

• Calibration
 • Calibration in weather forecasting
 • Calibration principles
 • Well-calibrated likelihood ratios
 • Calibration models

• Validation
 • Validation protocols
 • Validation metric
 (log-likelihood-ratio cost, \(C_{llr}\))
 • Validation graphic
 (Tippett plot)

• Consensus on Validation
 • Key points
Preliminaries

black boxes
Preliminaries – black boxes

• Both calibration and validation treat forensic-evaluation systems as black boxes:

 • not concerned with what is inside the box

 • only with what the box outputs in response to inputs
Preliminaries – black boxes
Preliminaries – black boxes
Preliminaries – black boxes
Preliminaries – black boxes
Preliminaries

logarithms
Preliminaries – logarithms

- Base 10 logarithms

<table>
<thead>
<tr>
<th></th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/1000$</td>
<td>$1/100$</td>
<td>$1/10$</td>
<td>1</td>
<td>10</td>
<td>100</td>
<td>1000</td>
<td>10^0</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>10^{-2}</td>
<td>10^{-1}</td>
<td>10^0</td>
<td>10^1</td>
<td>10^2</td>
<td>10^3</td>
<td>$\log_{10}(LR)$</td>
</tr>
<tr>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>$+1$</td>
<td>$+2$</td>
<td>$+3$</td>
<td></td>
</tr>
</tbody>
</table>
Preliminaries – logarithms

- Base 2 logarithms

<table>
<thead>
<tr>
<th>LR</th>
<th>log₂(LR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>-3</td>
</tr>
<tr>
<td>1/4</td>
<td>-2</td>
</tr>
<tr>
<td>1/2</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
</tr>
<tr>
<td>4</td>
<td>+2</td>
</tr>
<tr>
<td>8</td>
<td>+3</td>
</tr>
<tr>
<td>0.0125</td>
<td>3</td>
</tr>
<tr>
<td>0.25</td>
<td>2</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2^{-3}</td>
<td></td>
</tr>
<tr>
<td>2^{-2}</td>
<td></td>
</tr>
<tr>
<td>2^{-1}</td>
<td></td>
</tr>
<tr>
<td>2^0</td>
<td></td>
</tr>
<tr>
<td>2^1</td>
<td></td>
</tr>
<tr>
<td>2^2</td>
<td></td>
</tr>
<tr>
<td>2^3</td>
<td></td>
</tr>
</tbody>
</table>
Preliminaries – logarithms

- Natural logarithms

 - \(\ln = \log_e \)

 - \(e \approx 2.718 \) (Euler’s number)

\[
f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}
\]
Preliminaries

likelihood ratios
Preliminaries – likelihood ratios

- $\mu_k = 150$
 $\sigma_k = 15$
- $\mu_r = 100$
 $\sigma_r = 30$
Preliminaries – likelihood ratios

- $\mu_k = 150$
- $\sigma_k = 15$
- $\mu_r = 100$
- $\sigma_r = 30$
- $x_q = 175$
Preliminaries – likelihood ratios

\[
\frac{f (x_q | M_k)}{f (x_q | M_r)} = \frac{0.0066}{0.0006} = 11
\]

\(x_q = 175\)
Calibration
Calibration in weather forecasting

• Weather forecaster predicts:
 • Probability of precipitation for tomorrow is 40%.

• The next day it either rains or it doesn’t rain.

• Looking at lots of days for which the weather forecaster’s PoP was 40%, on what percentage of those days did it actually rain?
Calibration in weather forecasting

Well calibrated: • Prediction: 40%
 • Actual: 40%

Not well calibrated: • Prediction: 40%
 • Actual: 80%
Calibration in weather forecasting

• Solution:

• Collect data from a large number of past days.

• For each day collect: prediction actual weather

• Use those data to train a calibration model.

• Use the model to calibrate future predictions.
Calibration in weather forecasting

predictor variables → original forecast model → 40% → calibration model → 80% → calibrated output
Calibration in weather forecasting

predictor variables → calibrated forecast system → 80% → calibrated output
Calibration principles

• If:

 • a model is a parsimonious parametric model

 • there is a large amount of training data relative to the number of parameter values to be estimated

 • the data are representative of the relevant population

 • the assumptions of the model are not violated by the population distributions

• Then the output of the model will be well calibrated
Calibration principles

- In forensic science:
 - Models often fit complex distributions to high-dimensional data
 - The amount of case-relevant training data is often small relative to the number of parameter values to be estimated
 - The assumptions of the models may be violated
 - Therefore:
 - The outputs of the models are often not well calibrated
Calibration principles

• Solution:

 • Treat the output of the first (complex) model as an uncalibrated log likelihood ratio (a score)

 • Use a parsimonious model to convert the score to a calibrated log likelihood ratio

Vocabulary:

“score” = “uncalibrated log likelihood ratio”

“score” ≠ “similarity score”
Calibration principles

questioned-source feature vector(s) → feature to score model → score
known-source feature vector(s) →
relevant-population feature vectors →

score to log likelihood ratio model
→ test score
same-source scores → calibrated log likelihood ratio
→ different-source scores
Calibration principles

• Take data that:
 • represent the relevant population in the case
 • reflect the conditions of the questioned-source and known-source items in the case

• Construct same-source pairs and different-source pairs

• Use the first model to calculate a score for each pair

• Use the resulting same-source scores and different-source scores to train the calibration model
Calibration principles

• The scores are unidimensional

• The calibration model is parsimonious

• There is a large amount of data relative to the number of parameter values to be estimated

Therefore:

• The output of the calibration model is well calibrated
Calibration principles

- Important condition:
 - The data used for training the calibration model must:
 - represent the relevant population in the case
 - including there being enough data
 - reflect the conditions of the questioned-source and known-source items in the case
 - including any mismatches in conditions
 - If not, the system will be miscalibrated
Calibration principles

• Important condition:

 • The first model must output scores which are *uncalibrated log likelihood ratios*. They must take account of both:

 • the *similarity* between the questioned-source and the known-source items
 • their *typicality* with respect to the relevant population

 • Similarity-only scores cannot be used
Calibration principles

- questioned-source item
- known-source item(s)
- experience
- test score
- same-source scores
- different-source scores
- score
- human perception and judgement

score to log likelihood ratio model

calibrated log likelihood ratio
Well-calibrated likelihood ratios

• What is a well-calibrated likelihood-ratio system?

• The likelihood ratio of the likelihood ratio is the likelihood ratio

\[
LR = \frac{f(LR | H_s)}{f(LR | H_d)}
\]
Well-calibrated likelihood ratios

- Perfectly calibrated ln(LR) distributions

- Both same-source and different-source distributions are Gaussian, and they have the same variance

$$\mu_d = -\frac{\sigma^2}{2} \quad \mu_s = +\frac{\sigma^2}{2}$$
Calibration models

(a)

Uncalibrated scores

$\mu_d = 3$

$\mu_s = 6$

$\sigma = 1$
Calibration models

(a) Uncalibrated scores
\[\mu_d = 3 \]
\[\mu_s = 6 \]
\[\sigma = 1 \]

(b) Score to \(\ln(LR) \) mapping function
Calibration models

(c) Calibrated $\ln(LR)$

$\mu_d = -4.5$

$\mu_s = +4.5$

$\sigma = 3$
Calibration models

(c) Calibrated $\ln(LR)$

$\mu_d = -4.5$

$\mu_s = +4.5$

$\sigma = 3$

(d) $\ln(LR)$ to $\ln(LR)$

mapping function
Calibration models

• Score \([x]\) to \(\ln(LR)\) \([y]\) mapping function:

\[
y = a + bx
\]

\[
a = -b \frac{\mu_s + \mu_d}{2} \\
b = \frac{\mu_s - \mu_d}{\sigma^2}
\]

• Where \(\mu_s, \mu_d, \sigma\) are the statistics for the scores
Calibration models

- Score \([x]\) to \(\ln(LR)\) \([y]\) mapping function:

\[y = a + bx \]

\[a = -b \frac{\mu_s + \mu_d}{2} \quad b = \frac{\mu_s - \mu_d}{\sigma^2} \]

\[a = -b \frac{6 + 3}{2} \quad b = \frac{6 - 3}{1^2} \]

\[a = -3 \times 4.5 \quad b = 3 \]
Calibration models

- \(\ln(LR) [x] \) to \(\ln(LR) [y] \) mapping function:

\[
y = a + bx
\]

\[
a = -b \frac{\mu_s + \mu_d}{2}
\]

\[
b = \frac{\mu_s - \mu_d}{\sigma^2}
\]

\[
a = -b \frac{4.5 + (-4.5)}{2}
\]

\[
b = \frac{4.5 - (-4.5)}{3^2}
\]

\[
a = 0
\]

\[
b = 1
\]
Calibration models

• Score \([x]\) to \(\ln(LR) [y]\) mapping function:

\[y = a + bx \]

• In practice, **logistic regression** is commonly used to calculate \(a\) and \(b\)

• It is more robust to violations of the assumptions of Gaussian distributions with the same variance
Validation
Validation protocols

- Take data that:
 - represent the relevant population in the case
 - reflect the conditions of the questioned-source and known-source items in the case
- Construct same-source pairs and different-source pairs
- Use the calibrated forensic-evaluation system to calculate a likelihood ratio for each pair
- Assess how good each output is given knowledge of whether the corresponding input was a same-source pair or a difference-source pair
Validation protocols

- Important condition:

 - The data used for training the calibration model must:

 - represent the relevant population in the case
 - including there being enough data
 - reflect the conditions of the questioned-source and known-source items in the case
 - including any mismatches in conditions
 - If not, the results will not be indicative of how well the forensic-evaluation system works in the context of the case
Validation protocols

• If you have suitable data for calibration, you also have suitable data for validation, and vice versa:

 • Cross-validation:

 • leave-one-source out (for same-source comparisons)

 • leave-two-sources out (for different-source comparisons)
Validation metric

- Classification-error rate

<table>
<thead>
<tr>
<th>Input</th>
<th>Output Same Source</th>
<th>Output Different Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same Source</td>
<td>correct</td>
<td>incorrect</td>
</tr>
<tr>
<td>Different Source</td>
<td>incorrect</td>
<td>correct</td>
</tr>
</tbody>
</table>
Validation metric

- Classification-error rate

- names

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>same source</td>
<td>hit</td>
</tr>
<tr>
<td>different source</td>
<td>miss</td>
</tr>
<tr>
<td>false alarm</td>
<td>correct rejection</td>
</tr>
</tbody>
</table>
Validation metric

- Classification-error rate
- penalty values

<table>
<thead>
<tr>
<th>Input</th>
<th>Same source</th>
<th>Different source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same source</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Different source</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Validation metric

- Classification-error rate

- formula

\[
E_{\text{class}} = \frac{1}{2} \left(\frac{1}{N_s} \sum_{i=1}^{N_s} \left(\begin{array}{c} 0 \text{ if } y_i = s \\ 1 \text{ if } y_i = d \end{array} \right) + \frac{1}{N_d} \sum_{j=1}^{N_d} \left(\begin{array}{c} 1 \text{ if } y_j = s \\ 0 \text{ if } y_j = d \end{array} \right) \right)
\]

miss: \(y_i = d \)
false alarm: \(y_j = s \)
Validation metric

• Classification-error rate is not appropriate for assessing the performance of a system that outputs likelihood ratios because it is based on a **threshold applied to posterior probabilities**

• It is not appropriate for a forensic practitioner to assess posterior probabilities

• A threshold introduces a cliff-edge effect:
 • two values close to each other but on opposite sides of the threshold get treated differently
 • two values far from each other but on the same side of the threshold get treated the same
Validation metric

- Penalty functions for calculating classification-error rate
Validation metric

• For a system that outputs likelihood ratios, a metric of performance should be based on likelihood-ratio values

• given a same-source input pair

 • the larger the likelihood-ratio value the better the performance

• given a different-source input pair

 • the smaller the likelihood-ratio value the better the performance
Validation metric

- Penalty functions for calculating the log-likelihood-ratio cost (C_{llr})
Validation metric

- Formula for calculating C_{llr}

\[
C_{llr} = \frac{1}{2}\left(\frac{1}{N_s} \sum_{i=1}^{N_s} \log_2 \left(1 + \frac{1}{LR_{s_i}}\right) + \frac{1}{N_d} \sum_{j=1}^{N_d} \log_2 \left(1 + LR_{d_j}\right) \right)
\]
Validation metric

- The **better the performance** of the system, the **smaller the C_{llr} value**

 - $C_{llr} > 0$

 - A system that always responds with a likelihood-ratio value of 1 irrespective of the input provides no useful information
 - the posterior odds will always equal the prior odds
 - this system will have $C_{llr} = 1$
Validation metric

- The **better the performance** of the system, the **smaller the** C_{llr} **value**

 - $C_{llr} > 1$ can occur for an uncalibrated or miscalibrated system
 - this can be addressed by calibrating the system

 - A well-calibrated system will have $C_{llr} \leq 1$
 - but $C_{llr} \leq 1$ does not necessarily imply that the system is well calibrated

 - If $C_{llr} < 1$, the system is providing useful information
Validation metric

- Perfectly calibrated $\ln(LR)$ distributions
- C_{llr} values
Validation metric

- Perfectly calibrated $\ln(LR)$ distributions
 - C_{llr} values
- Uncalibrated score distributions
 - C_{llr} value 5.2

0.84

0.51

0.24

0.09
Validation metric

- Example C_{llr} values
- different forensic-voice-comparison systems validated on the same case-relevant data

<table>
<thead>
<tr>
<th>System name</th>
<th>System type</th>
<th>C_{llr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batvox 3.1</td>
<td>GMM-UBM</td>
<td>0.59</td>
</tr>
<tr>
<td>MSR GMM-UBM</td>
<td>GMM-UBM</td>
<td>0.58</td>
</tr>
<tr>
<td>MSR GMM i-vector</td>
<td>GMM i-vector</td>
<td>0.45</td>
</tr>
<tr>
<td>Batvox 4.1</td>
<td>GMM i-vector</td>
<td>0.37</td>
</tr>
<tr>
<td>Nuance 9.2</td>
<td>GMM i-vector</td>
<td>0.29</td>
</tr>
<tr>
<td>VOCALISE 2017B</td>
<td>GMM i-vector</td>
<td>0.27</td>
</tr>
<tr>
<td>VOCALISE 2019A</td>
<td>x-vector</td>
<td>0.25</td>
</tr>
<tr>
<td>E3FS3α</td>
<td>x-vector</td>
<td>0.21</td>
</tr>
<tr>
<td>Phonexia BETA4</td>
<td>x-vector</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Validation metric

- Example C_{llr} values

- a forensic-voice-comparison system validated with questioned-speaker recordings of different durations
Validation plot

• For a system that outputs likelihood ratios, a graphical representation of performance should be based on likelihood-ratio values

• given a same-source input pair
 • the larger the likelihood-ratio value the better the performance

• given a different-source input pair
 • the smaller the likelihood-ratio value the better the performance
Validation plot

- **Tippett plot:**
 - rank the log(LR) values resulting from same-source pairs from smallest to largest
 - plot the proportion of values that are \leq each log(LR) value

 - value on y axis is the **proportion of same-source log likelihood ratio values** that are **smaller than** or equal to the value on the x axis

<table>
<thead>
<tr>
<th>x</th>
<th>-0.5</th>
<th>0.7</th>
<th>1.4</th>
<th>2</th>
<th>2.3</th>
<th>2.5</th>
<th>2.6</th>
<th>2.8</th>
<th>3.1</th>
<th>3.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1</td>
</tr>
</tbody>
</table>
Validation plot

- Tippett plot:
Validation plot

- Tippett plot:
 - rank the log(LR) values resulting from different-source pairs from smallest to largest
 - plot the proportion of values that are \geq each log(LR) value

 - value on y axis is the proportion of different-source log likelihood ratio values that are larger than or equal to the value on the x axis

<table>
<thead>
<tr>
<th>x</th>
<th>−3.6</th>
<th>−3.1</th>
<th>−2.8</th>
<th>−2.6</th>
<th>−2.5</th>
<th>−2.3</th>
<th>−2</th>
<th>−1.4</th>
<th>−0.7</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Validation plot

- Tippett plot:
Validation plot

- Tippett plots can be used to help:
 - decide whether the system is well calibrated or whether there is obvious bias in the validation results
 - decide whether the log-likelihood-ratio value calculated for the comparison of the actual questioned-source and known-source items in the case is supported by the validation results
 - values within the range of the validation results would be unambiguously supported
 - values just beyond the range of the validation results would be reasonable
 - values far beyond the range of the validation results would not be reasonable
Validation plot

- Perfectly calibrated $\ln(LR)$ distributions
 - C_{llr} values
- Uncalibrated score distributions
 - C_{llr} value

$$0.84$$

$$0.51$$

$$5.2$$

$$0.24$$

$$0.09$$
Validation plot

- Tippett plots

- C_{llr} values

5.2 0.84 0.51 0.24 0.09
Validation plot

- Example Tippett plots

- C_{llr} values

1.07

0.70
Validation plot

- Example Tippett plots

- \(C_{llr} \) values

\(0.31 \)

\(0.70 \)
Validation plot

- Example Tippett plots
 - different variants of a forensic-voice-comparison system validated on the same case-relevant data
 - C_{llr} values

\[0.21\]

\[0.21\]
Validation plot

- Example Tippett plots
 - a forensic-voice-comparison system validated with questioned-speaker recordings of different durations
 - C_{llr} values

![Validation plot with 5s, 20s, and 60s recordings]

- Log(LR) values for different durations:
 - 5s: 0.45
 - 20s: 0.21
 - 60s: 0.12
Consensus on Validation
Consensus on validation

Consensus on validation

- Key points:

2.12.1. The forensic practitioner **should communicate** to the court what **propositions** the forensic practitioner has adopted for the case, including what they have adopted as the **relevant population**.

2.12.2. The forensic practitioner **should communicate** to the court what the forensic practitioner understands the **conditions of the questioned-source and known-source items** to be.
Consensus on validation

• Key points:

 2.12.3. The forensic-comparison system should be well calibrated.
Consensus on validation

- Key points:

2.12.4. **Validation data should be representative of the relevant population** for the case, and **reflective of the conditions** of the questioned-source and known-source items in the case.

2.12.5. The forensic practitioner’s **decision** as to whether the validation data are sufficiently representative of the relevant population for the case, and sufficiently reflective of the conditions of the questioned-source and known-source items in the case, will be a **subjective judgement**.
Consensus on validation

• Key points:

2.12.6. Validation results should be presented as a Tippett plot and a C_{llr} value. These should be examined for signs of miscalibration.

2.12.7. The validation threshold (acceptance criterion) for C_{llr} should be 1. As long as C_{llr} is less than 1, the system is providing useful information.
Consensus on validation

- Key points:

2.12.8. To decide whether the likelihood-ratio value calculated for the comparison of the questioned-source and known-source items is supported by the validation results, it should be compared with the values shown in the Tippett plot.
Thank You