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Discriminant analysis models trained on acoustic vowel production data have been found to have significant
correlation with listeners’ perception. Two regularized discriminant analysis models were trained on
monolingual speakers’ vowels. One model was trained on North Central Peninsular Spanish vowel tokens, and
the other on Western Canadian English vowel tokens. For each language the model which resulted in the lowest
cross-validated classification error rate was close to the least complex model possible, i.c., close to linear
discriminant analysis using the mean of the variances of the acoustic variables but not using the covariances
between variables. In order to make cross-language vowel perception predictions the Spanish model was used to
classify English vowel tokens and the English model was used to classify Spanish vowel tokens. Results suggest
that monolingual North Central Peninsular Spanish listeners would assimilate most tokens of Western Canadian

English /i/ and /1/ to Spanish /i/ and /e/ respectively, and thus for this combination of dialects, Spanish-speaking

learners of English would not be expected to have difficulty with the English /i/~/1/ contrast.

1 Introduction

It is assumed that listeners learn to categorize speech
sounds on the basis of the statistical distribution of acoustic
properties of the speech to which they are exposed [1, 2].
Thus a model of human speech perception can also be
constructed on the basis of acoustic production data.
Discriminant analysis models trained on speech production
data have previously been found to have significant
correlation with listeners’ perception [3, 4, 5]. The present
paper trains regularized discriminant analysis models on
acoustic data from monolingual speakers’ vowels, and for
each model determines the level of model complexity
which results in the highest cross-validated correct-
classification rate. One model is trained and tested on
acoustic data from North Central Peninsular Spanish
vowels, and another is trained and tested on acoustic data
from Western Canadian English vowels (in each case, only
a subset of the vowel inventory was used). The Spanish and
English models are then used to make predictions as to how
monolingual listeners of each language will perceive the
vowels of the other language. Such predictions are useful
for understanding the vowel-perception problems which a
speaker of one language may face when they begin to learn
the other language.

2 Data

Seventeen monolingual speakers of North Central
Peninsular Spanish (eight male and nine female) were
recruited in Vitoria-Gasteiz, Autonomous Region of the
Basque Country, Spain. Nineteen monolingual Western
Canadian English speakers (eight male and eleven female)
were recruited in Edmonton, Alberta, Canada. They read
sentences aloud in response to the written prompts: “La
proxima palabra es ” and “The next word is ____ ” (the
Spanish and English sentences have the same meaning).
The prompt words were BIPA, BEPA, and BEIPA in
Spanish corresponding to /bipa/, /bepa/, and /beipa/, and
BEEPA, BIPPA, BAYPA, and BEPPA in English
corresponding to /bipa/, /bipa/, /bepa/, and /bepa/. Each
speaker read each sentence ten times in randomized order.
Recordings were made at a sampling frequency of 44.1 kHz
using a Sennheiser HMD 280 PRO headset and a Roland
ED UA-30 USB Audio Interface with a Rolls MP13
preamplifier.

The duration and first- and second-formant tracks (F1 and
F2 tracks) of all the vowels were measured. The geometric
means of these acoustic properties are shown in Fig. 1.

2500 ' Eng i/
2250 x

Sp /if \QE”Q fel

Sp /ei/

Sp /G/A\Eng 1/
1750 Eng /E/G\ -

325 400 475 550 625 700

F2 (Hz)

2000

F1 (Hz)
135 ASP /ei/
120 [ ]
Eng /e/
— 105
(2]
£ .
-§ 90 Eng /i/ o
©
-§ N ASp lel Eng /e/
75
Sp /il
@
60 Eng /1/
(b)
325 400 475 550 625 700
F1 (Hz)

Fig. 1 Gender-balanced geometric means for first and
second formants and durations of vowels produced by
monolingual Spanish and English speakers. (a) Comet
heads represent mean F1 and F2 at 25% of the duration of
the vowels and comet tails represent the mean formant
trajectories from 25% to 75% of the duration of the vowels.
(b) Markers represent mean vowel duration and mean F1 at
25% of the duration of the vowels.



3  Discriminant Analysis Models

Two discriminant analysis models were constructed, one
trained on the monolingual Spanish speakers’ vowel
production data and one trained on the monolingual English
speakers’ vowel production data. Five acoustic predictor
variables were entered into the models: F1 at 25% of the
duration of the vowel, the change in F1 from 25% to 75%
of the duration of the vowel, F2 at 25% of the duration of
the vowel, the change in F2 from 25% to 75% of the
duration of the vowel, and duration. Prior to constructing
the discriminant analysis models, formant values were
normalized using a cross-language version of constant-log-
interval normalization [6]. Formant values were kept in the
log-scale for entry into the model (the exponents of the
means of the normalized formant values are the same as the
gender-balanced geometric means in Fig. 1). Duration was
independently normalized using the same procedure.

There are two basic variants of discriminant analysis,
quadratic which makes use of a separate estimate of the
within-group covariance matrix for each category, and
linear which makes use of a single pooled within-group
estimate of the covariance matrix for all categories. Linear
discriminant analysis can be further simplified (shrunk) by
only using the mean of the diagonal elements of the pooled
covariance matrix, i.e., only using the mean of the variable
variances and ignoring the between-variable covariances.
Classification boundaries based on quadratic discriminant
analysis can be curved, whereas classification boundaries
based on linear and shrunk-linear discriminant analyses are
straight. Crisp classification in linear discriminant analysis
can be made on the basis of Mahalanobis distance from the
category means, and in shrunk-linear discriminant analysis
it can be made on the basis of Euclidian distance. Fig. 2
provides examples of graphical representations of the three
different types of covariance matrices, and Fig. 3 provides
examples of the classification boundaries based on the three
different types of discriminant analysis model (Fig. 3 shows
two-dimensional  lines, whereas the classification
boundaries in the models tested were hyperplanes in a five-
dimensional space). The more complex quadratic
discriminant analysis will have lower bias than linear
discriminant analysis if the covariance matrices of different
categories are substantially different, but the latter will
usually have lower variance since the pooled covariance
estimate is based on more data than the individual-within-
category covariance matrices (e.g., if there are three
categories then the pooled covariance matrix is estimated
on the basis of three times the amount of data). For small to
moderate degrees of heteroscedasticity, the smaller variance
in the linear model may more than compensate for the
larger bias and result in higher correct-classification rates.
The shrunk-linear discriminant analysis may have yet
greater bias but even less variance.

Regularized discriminant analysis [7, 8] uses a mixture of
the estimate of the within-group covariance matrix
calculated by pooling data across groups, and the estimates
of within-group covariance matrices calculated separately
for each group. This allows for the construction of models
whose complexity is intermediate between linear and
quadratic. Regularized discriminant analysis also allows for
additional reduction in model complexity by shrinking the
within-group covariance matrices towards the pooled
within-group scalar covariance, i.e., the identity matrix
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Fig. 2 Graphical representations of (a) examples of the
separate covariance matrices for each category used in
quadratic discriminant analysis, (b) examples of the pooled
covariance matrices used in linear discriminant analysis,
and (c) examples of the shrunk covariance matrices used in
shrunk-linear discriminant analysis. The red, blue, and
yellow ellipsoids represent contours on the probability
density functions derived from normalized F1 and F2 at
25% of the duration of tokens of Spanish /i/, /ei/, and /e/
respectively (see Fig. 3).

24414

22081

19981

F2 (Hz)

1808

1636




Acoustics 08 Paris

multiplied by the mean of the diagonal elements of the Yo = X + (1=)WE + (1—y)trace(E) 1
pooled  within-group  covariance. The regularized REGY a )(Y (=) ) p) M
covariance matrices are calculated as in Eq. (1): Where Xggg, is the regularized covariance matrix for vowel

category v, X, is the covariance matrix estimated using data
from category v, X (with no subscript) is the covariance
matrix estimated using data pooled across all vowel
categories, I is the identity matrix, p is the number of
variables, o is the regularization coefficient (range 0 =
linear to 1 = quadratic), and vy is the shrinkage coefficient
(range 0 = full shrinkage to 1 = no shrinkage).
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Fig. 3 (a) Examples of curved boundaries based on :
quadratic discriminant analysis. (b) Examples of straight ’
boundaries based on linear discriminant analysis. (c)
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Table la provides a confusion matrix of the Spanish
regularized discriminant analysis model’s cross-validated
classification of the Spanish vowel tokens, and Table 1b
provides a confusion matrix of the Spanish regularized
discriminant analysis model’s classification of the English
vowel tokens. Most of the first-language classification
errors were due to tokens of Spanish /i/ being misclassified

as Spanish /e/.

Table 2a provides a confusion matrix of the English
regularized discriminant analysis model’s cross-validated
classification of the English vowel tokens, and Table 2b
provides a confusion matrix of the English regularized
discriminant analysis model’s classification of the Spanish
vowel tokens.

5 Discussion and Conclusions

The most noteworthy result of the regularized discriminant
analyses is that, for both Spanish and English, the model
which resulted in the lowest rate of classification errors was
a model which had very small values for the regularization
and shrinkage coefficients and was thus close to the least
complex model available, i.e., linear discriminant analysis
using the mean within-variable variances but not between-
variable covariances. This result may be due to the
relatively small amount of data available for model training
(data from 17 Spanish speakers and 19 English Speakers);
however, classification error rates were very low
(impressively low in the case of the English model), and it
may be that there are constraints on human vowel
production and perception which mitigate towards simple
patterns for perceptual boundaries [9]. Additional
experiments will be necessary to assess the degree of
correlation between the statistical models presented here
and monolingual Spanish and English listeners’ perception
of these vowels. If the “simplest works best” finding is
upheld, then this opens the possibility of easily obtaining
rough-and-ready predictions of cross-language vowel
perception on the basis of published summary statistics
where only the means and variances of the acoustic
properties of categories are provided. Such rough-and-ready
predictions could be used as a basis upon which to select
subgroups of vowels which may warrant further
investigation.

The most noteworthy observations regarding the cross-
language predictions made by the regularized discriminant
analysis models are that almost all the tokens of English /i/
were classified as Spanish /i/, and the majority of tokens of
Spanish /i/ were classified as English /i/, while all the
tokens of English /1/ were classified as Spanish /e/, and the
majority of tokens of Spanish /e/ were classified as English
/1/. English /i/ therefore appears to be similar to Spanish /i/,
and English /1/ appears to be similar to Spanish /e/. Spanish
learners of English have often been reported to confuse
English /i/ and English /1/ [10, 11, 12, 13]; however, the
results of the present study suggest that North Central
Peninsular Spanish learners of Western Canadian English
would initially assimilate tokens of English /i/ to Spanish /i/
and assimilate tokens of English /1/ to Spanish /e/ (similar
to Peruvian Spanish listeners’ perception of Scottish
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English vowels [14]), and thus would not be expected to
have difficulty distinguishing the two English vowels.

(a) Classified
Produced Sp /i/ Sp /ei/ Sp /e/
Sp /i/ 89.4 10.6
Sp /ei/ 99.8 1.2
Sp /e/ 100
(b) Classified
Produced Sp /i/ Sp /ei/ Sp /e/
Eng /i/ 99.5 0.5
Eng /1/ 100
Eng /e/ 94.3 5.7
Eng /e/ 100

Table 1 Confusion matrix of the classification of vowel
tokens by the Spanish regularized discriminant analysis
model. The values in the cells are the percentage of tokens
of the vowel category of the row which are classified as the
vowel category of the column. Blank cells have a value of
zero. (a) Cross-validated classification of Spanish vowels.
(b) Classification of English vowels.

(a) Classified
Produced Eng/i/ Eng/t/ Eng/e/ Eng/e/
Eng /i/ 100
Eng /1/ 99.5 0.5
Eng /e/ 0.5 99.5
Eng /¢/ 1.0 99.0
(b) Classified
Produced Eng/i/ Eng/t/ Engl/e/ Eng/e/
Sp /i/ 91.8 8.2
Sp /ei/ 100
Sp /e/ 0.6 81.0 7.7 10.7

Table 2 Confusion matrix of the classification of vowel
tokens by the English regularized discriminant analysis
model. The values in the cells are the percentage of tokens
of the vowel category of the row which are classified as the
vowel category of the column. Blank cells have a value of
zero. (a) Cross-validated classification of English vowels.
(b) Classification of Spanish vowels.
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