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Abstract 
The issues of validity and reliability are important in forensic 
science. Within the likelihood-ratio framework for the 
evaluation of forensic evidence, the log-likelihood-ratio cost 
(Cllr) has been applied as an appropriate metric for evaluating 
the accuracy of the output of a forensic-voice-comparison 
system, but there has been little research on developing a 
quantitative metric of precision. The present paper describes 
two procedures for estimating the precision of the output of a 
forensic-comparison system, a non-parametric estimate and a 
parametric estimate of its 95% credible interval. The 
procedures are applied to estimate the precision of a basic 
automatic forensic-voice-comparison system presented with 
different amounts of questioned-speaker data. The importance 
of considering precision is discussed. 

1. Introduction 

1.1. Concern about accuracy and precision in forensic 
science 

Recently there has been a great deal of concern in forensic 
science about validity and reliability [1–4]. The National 
Research Council report to Congress on Strengthening 
Forensic Science in the United States [3] urged that procedures 
be adopted which include “the reporting of a measurement 
with an interval that has a high probability of containing the 
true value; . . . [and] the conducting of validation studies of the 
performance of a forensic procedure” (p. 121); the latter 
requiring the use of “quantifiable measures of the reliability 
and accuracy of forensic analyses” (p. 23). 

1.2. Accuracy 

In statistics and scientific literature validity is synonymous 
with accuracy and reliability with precision; however, in 
judicial and forensic-science literature reliability has often 
been discussed without explicit definition, or has been defined 
in terms of a measure of validity: classification-error rates, 
i.e., the proportion of same-origin comparisons in a test set 
which are classified as different-origin (misses), and the 
proportion of different-origin comparisons which are 
classified as same-origin (false alarms).  

If one accepts that the likelihood-ratio framework is the 
correct framework for the evaluation of forensic comparison 
evidence [5–18], then a metric such as classification-error 
rate, based on a hard-thresholding of posterior probabilities, is 
not an appropriate measure of accuracy (by extension, this is 
also true for equal error rate, EER). Rather, an appropriate 
metric should be based on likelihood ratios (LRs) and should 

be continuous in nature – an LR which provides greater 
support for a contrary-to-fact hypothesis should attract a 
heavier penalty than one which provides more limited support 
for the contrary-to-fact hypothesis, since the former has a 
greater potential to contribute to a miscarriage of justice. An 
appropriate measure of accuracy, developed for use in 
automatic speaker recognition [19, 20] and subsequently 
applied in forensic voice comparison, e.g., [14, 21], is the log-
likelihood-ratio cost (Cllr), which, at least in automatic 
speaker recognition, may now be considered a standard metric 
of the accuracy of a system which outputs LRs. 

1.3. Precision 

In addition to accuracy, however, it is also important to 
consider precision [22, 23]. Imagine two systems that are 
assessed as having the same accuracy and when tested on a 
particular pair of objects multiple times give the same average 
log10(LR) of −2, but the test results on one system have a 
wide range of LR output values leading to an estimated 95% 
credible interval, in log10(LR), of ±0.1 whereas the other has 
an estimated 95% credible interval of ±3. The former system 
(with a 95% LR credible interval for this pair of objects 
ranging from 79 to 126 in favor of the different-origin 
hypothesis) would be preferred over the latter (with a 95% LR 
credible interval for this pair of objects ranging from 100 000 
in favor of the different-origin hypothesis to 10 in favor of the 
same-origin hypothesis). The former, more precise, system 
would be much more useful in assisting the trier of fact to 
weigh the forensic-comparison evidence as part of making 
their ultimate decision as to the guilt or innocence of the 
accused (the trier of fact is the judge, the panel of judges, or 
the jury, depending on the legal system). 

The present paper describes and provides examples of the 
use of two procedures for calculating a metric of the precision 
of the LR output of a forensic comparison system. The metric 
is an estimate of the 95% credible interval (CI) [24]. One 
procedure is non-parametric and the other parametric, and the 
examples are of their application to an automatic forensic-
voice-comparison system. The aim of developing this metric 
is to allow forensic scientists to compare developmental 
systems, and to allow them to report the precision, as well as 
the accuracy, of the final system so that a judge can consider 
whether testimony based on the system should be admitted in 
court [1]. Finally, as part of their testimony, it would allow a 
forensic scientist to make a statement such as the following: 

Based on my evaluation of the evidence, I have 
calculated that one would be X times more likely to 
obtain the acoustic differences between the voice 
samples if the questioned-voice sample had been 
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produced by the accused than if it had been produced 
by someone other than the accused. Based on my 
calculations, I am 95% certain that it is at least Xlower 
times more likely and not more than Xupper times more 
likely. 

1.4. Precision at the activity level 

The underlying idea is that there is a true LR for the 
comparison of a pair of speakers (at least for the specified 
speaking styles), and each LR which is calculated on the basis 
of a pair of samples from the two speakers is an estimate of 
the true LR. If we take multiple non-overlapping pairs of 
voice samples from a pair of speakers we can calculate an LR 
estimate from each pair of samples. According to the central-
limit theorem, if we take the mean of all our estimates this is 
our best estimate of the true LR. We can also look at the 
variance of our individual estimates around the best estimate.  

When it comes to the actual suspect and offender data we 
only have two voice samples and the LR we calculate for this 
pair of samples is all we have. We could run the same system 
several times on this pair and measure the variability due to 
any imprecision in measurement and statistical modeling; 
however, in addition to the latter, what we are interested in 
and trying to estimate here is what would our estimate of the 
variability be if we could obtain multiple additional estimates 
of the LR for the suspect and offender using additional voice 
samples from this pair of speakers (we cannot in practice 
obtain multiple samples from the offender because we don’t 
know who the offender is). In calculating and presenting such 
an estimate of precision, we have shifted from addressing the 
same-speaker versus different-speaker propositions purely at 
the source level and are now addressing the activity level [25]. 
We are doing this because what the court cares about is what 
this evidence and our forensic expertise can tell them about 
the speakers. Our forensic expertise, based on tests of our 
forensic-voice-comparison system, tells us that multiple tests 
on the same pair of speakers will result in a range of LR 
estimates, therefore when we only have one LR estimate there 
is a degree of uncertainty as to how representative it is of this 
pair of speakers. It is therefore our duty as forensic scientists 
to inform the court of this degree of uncertainty. To take an 
extreme example, imagine that tests of our system on one pair 
of voice samples from a given pair of speakers we obtained an 
LR of one million in favor of the same-speaker hypothesis, 
but on another pair of voice samples from the same pair of 
speakers we obtained an LR of one million in favor of the 
different-speaker hypothesis, then in a court case the 
comparison of the suspect and offender samples resulted in an 
LR of one million in favor of the same-speaker hypothesis. It 
would be very misleading to the court if we were only to 
report the latter result and not also report the tests of the 
reliability of our system. 

1.5. Black-box approach 

Forensic-voice-comparison systems typically have several 
stages involving selection of the portion of the speech signal 
to measure, the measurement of acoustic properties, score 
calculation, and calibration and fusion. It may be possible to 
apply precision analyses to each stage, but combining these to 
form an analytic solution for the whole system would seem to 
be an intractable problem, and such a solution developed for 
one system would not be immediately transferrable to a 
different system based on different acoustic measurements or 

different modeling techniques, etc. We therefore treat the 
system as a black box and in a test situation simply compare 
the output of the black box with what we know about the 
input. This allows us to apply the same precision-
measurement procedure to systems with very different 
architectures, e.g. an acoustic-phonetic system and an 
automatic system [27]. 

2. Calculation of Precision 

2.1. Calculation of sets of independent likelihood ratios 

Assume that one has a test database containing a large number 
of speakers and four non-contemporaneous recordings of the 
voice of each speaker, labeled A, B, C, and D. A larger 
number of recordings per speaker could be used, but four 
recordings per speaker is the minimum necessary for the CI 
estimate to be based on LRs calculated from both same-
speaker and different-speaker comparisons; two is the 
minimum necessary to estimate the CI from different-speaker 
comparisons only. 

For each possible same-speaker comparison in the test 
database, a suspect (known-speaker) model can be 
constructed using data from recording A, and data from 
recording B can be used as offender (questioned-speaker) data 
(probe data) to generate an LR. A second LR for the same 
same-speaker comparison can be calculated using C to create 
a suspect model with D used as offender data (see Table 1). 
This results in two LR estimates of the strength of evidence 
for each same-speaker comparison calculated using 
independent, i.e., non-overlapping, pairs of test data.  

Similarly, for each possible different-speaker comparison 
in the test database, each speaker’s A recording is used to 
create a suspect model and the other speaker’s B data is used 
as offender data, and each speaker’s C is used to create a 
suspect model with the other speaker’s D used as offender 
data (see Table 2). This results in four LR estimates for each 
different-speaker comparison calculated using independent, 
i.e., non-overlapping, pairs of test data. 

Table 1: Same-speaker comparison pairs 

Suspect 
model 

Recording Offender 
data 

Recording 

001 A 001 B 
001 C 001 D 
002 A 002 B 
002 C 002 D 
 ׃ ׃ ׃ ׃

Table 2: Different-speaker comparison pairs 

Suspect 
model 

Recording Offender 
data 

Recording 

001 A 002 B 
001 C 002 D 
001 A 003 B 
001 C 003 D 
 ׃ ׃ ׃ ׃

002 A 001 B 
002 C 001 D 
002 A 003 B 
002 C 003 D 
 ׃ ׃ ׃ ׃
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Given two independent estimates for each same-speaker 
comparison and four independent estimates for each different-
speaker comparison, a pooled within-group (within-
comparison) sample variance can be estimated. 

For a database with N speakers, given two independent 
estimates for each same-speaker comparison and four 
independent estimates for each different-speaker comparison, 
there are a total of 2N same-speaker comparisons and 
4((N2−N)/2), i.e., 2N(N−1), different-speaker comparisons. 

2.2. Non-parametric procedure for the calculation of a 
credible interval 

Earlier experimental results indicate that the distribution of 
different-speaker log LRs generated by acoustic-phonetic 
forensic-voice-comparison systems may be non-normal and 
heteroscedastic [26, 27]. Rather than estimating the CI via a 
parametric estimate of the sample variance, we therefore first 
adopt a non-parametric procedure which finds the boundary 
between the most outlying α data points and the 1−α least 
outlying. The procedure is as described below, and Matlab® 
scripts and functions are provided on the first author’s website 
<http://geoff-morrison.net>. All calculations are carried out 
using log-LR values.  

For each same-speaker and different-speaker comparison, 
i, first calculate the within-comparison mean, ݔҧ௜, of the 
individual log-LR estimates, ݔ௜௝: 

ҧ௜ݔ  ൌ ଵ௡೔ ∑ ௜௝௡೔௝ୀଵݔ  (1) 

where ݊௜ is the number of log-LR estimates calculated for 
comparison i (herein two for same-speaker comparisons, e.g., 
001A–001B and 001C–001D , and four for different-speaker 
comparisons, e.g., 001A–002B, 001C–002D, 002A–001B, and 
002C–001D), and ݔ௜௝ is the jth LR estimate of comparison i.  

Next, calculate the deviation-from-mean value, ݕ௜௝, of 
each log-LR estimate, ݔ௜௝:  

௜௝ݕ  ൌ ௜௝ݔ െ  ҧ௜ (2)ݔ

Then estimate the credible interval using a procedure based on 
local linear regression with a nearest-neighbor kernel [28, 
§6.1.1] (to calculate a 95% credible interval, set α = 0.05): 

1. For the value ݔ଴ at which one wishes to estimate the 
credible interval, find its k nearest neighbors among the ݔҧ௜. 
Designate this group of i values as K, and the number of ݕ௜௝ 
{݅ א   .data points as ݊௞ {ܭ

2. Set ݉ ൌ ݊௞. Set ܯ ൌ  .ܭ

3. For all ݅ א  ҧ௜. (The useݔ ௜௝ห onݕfit a linear regression of ห ,ܯ
of within-comparison means, ݔҧ௜, and the absolute deviation-
from-mean values, หݕ௜௝ห, implies an assumption that the 
distribution is symmetrical.) 

4. If ݉ ൌ  .go to step 8 ,ۀߙ2݊௞ہ

5. For all ݅ א  ௜௝, betweenߝ ,calculate the signed residuals ,ܯ
each observed value, หݕ௜௝ห , and its corresponding value, ݕො௜௝, 
estimated from the linear regression. 

6. If 3݊ہ௞ۀߙ ൐ ݉ ൐ ݉ discard the ,ۀߙ2݊௞ہ െ  data ۀߙ2݊௞ہ
points with the most negative ߝ௜௝ values, leaving m data points ܯ. Else discard the ݊ہ௞ۀߙ data points with the most negative ߝ௜௝ values, leaving m data points ܯ. 

7. Repeat steps 3 through 6. 

8. Use the estimated coefficient values from the linear 
regression at the last iteration to calculate the estimated value ݕො଴ at ݔ଴, and use this to calculate the estimated value of the CI 
at ݔ଴: CI ൌ ଴ݔ േ  .ො଴ݕ

Figure 1 provides a graphical representation of the non-
parametric procedure for the calculation of the 95% CI for a 
log10(LR) value of x0 = +2 (LR of 100 in favor of the same-
speaker hypothesis). The example makes use of the system 
described below (§3) using 40 s of questioned-speaker data. 
The dots in Figure 1 show the 500 nearest neighbors to x0. 
The straight green lines show the fits of the successive linear 
regressions (the lowest line is from the first iteration and the 
highest line from the last). The blue dots are the 90% of data 
points discarded and the red dots are the 10% of data points 
remaining at the last iteration – the last linear regression is 
fitted to this last 10% of the data. The triangle shows the 
estimated y0 value of 1.166. The estimated 95% log10 LR CI 
at this point is therefore 2±1.166, or a 95% LR CI ranging 
from 6.82 to 1 452 in favor of the same-speaker hypothesis. 

 

 
Figure 1: Graphical representation of the non-parametric 

procedure for the estimation of a 95% CI. 

2.3. Parametric procedure for the calculation of a credible 
interval 

If homoscedasticity and normality can be assumed, then the 
CI can be estimated using the t distribution of the pooled-
within-group posterior standard deviation of the x values (ߪԢ) 
using degrees of freedom (df) equal to the total number of LR 
estimates minus the total number of speaker-comparisons 
[24]:  

 CI ൌ േݐభషమೌ,೏೑ߪԢ (3) 

 ݂݀ ൌ ∑ ሺ݊௜ െ 1ሻ௜  (4) 

In principle, the posterior standard deviation (ߪԢ) is calculated 
using the prior standard deviation (ߪ) and the sample standard 
deviation (ߪො). In practice we will use flat priors, hence in 
Equation 3 we simply substitute ߪො for ߪԢ and our estimate of 
the CI will be based only on the sample variance: 

ොଶߪ  ൌ భ೏೑ ∑ ቀ∑ ൫ݔҧ௜ െ ௜௝൯ଶ௡೔௝ୀଵݔ ቁ௜  (5) 

Note that we have used the unbiased least-squares 
estimate of ߪොଶ. If the biased maximum-likelihood estimate 
were used, i.e., using ∑ ݊௜௜  in place of df in Equation 5, the 
estimated CI would be narrower.  
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3. Experimental Methodology 

3.1. Databases 

Usually in forensic voice comparison, the language and 
dialect spoken in the questioned-voice recording can be 
determined without being disputed by either the prosecution 
or defense. The universal background model (UBM) should 
be representative of the potential population of offenders, and 
should therefore match the language and dialect of the 
questioned-voice recordings. For expedience, the present 
study made use of recordings which were labeled in their 
source databases as US English. In constructing a real 
forensic voice comparison system one would have to be more 
specific about the dialect in question and would have to verify 
that each recording was a match for that dialect.  

All training, calibration, and test data were from 
telephone recordings of speakers labeled in their respective 
source databases as adult male US English speakers (although 
the data used to train the UBM may have contained some 
recordings of people speaking other languages.)  

The training database, for training the UBM, consisted of 
the 800 longest recordings from the National Institute of 
Standards and Technology (NIST) 2004 speaker recognition 
evaluation (SRE) database [29]. 

The calibration and test databases were compiled from the 
telephone subset of the 8conv condition from the NIST 2008 
SRE database [30], within which there were 132 US English 
speakers. The calibration database consisted of two non-
contemporaneous recordings (A and B) from each of 32 
speakers, each of voice-active duration greater than one 
minute. The evaluation database consisted of four non-
contemporaneous recordings (A, B, C, and D) from each of 
the remaining 100 speakers, each of voice-active duration 
greater than one minute. 

The decision as to which recording from each speaker to 
assign to A and B or A, B, C, and D, was arbitrary. 

3.2. Forensic-voice-comparison system 

The forensic-voice-comparison system tested was a basic 
automatic system. The front-end extracted 16 mel-frequency 
cepstral coefficient (MFCC) values from 20 ms frames 
overlapped by 10 ms, which were appended with delta 
coefficients [31]. Cumulative density mapping was used for 
feature normalization [32]. The back-end was based on a 512-
mixture Gaussian mixture model – UBM (GMM-UBM) 
system [33]. For simplicity, no additional channel 
compensation procedures were applied. 

The UBM was trained using expectation maximization 
(EM), and suspect-speaker models were created using five-
iteration mean-only maximum a posteriori (MAP) adaptation 
from the UBM [33]. The system was calibrated using linear 
logistic regression as per [14, 21], using the FoCal Toolkit 
[34]. Calibration weights were calculated using same-speaker 
and different-speaker (lower numbered speaker A as suspect 
model and higher numbered speaker B as offender data) 
scores derived from the calibration data (all the calibration 
data were used), and these weights were then used to calibrate 
the LRs derived from the test data. 

3.3. Procedures 

The procedures described in §2 were used to estimate the 95% 
CI. For the non-parametric system the CI was estimated at 

each ݔҧ௜ value, with k set to 500. The Cllr value for the ݔҧ௜ 
values was also calculated. 

Usually in forensic casework, a relatively large amount of 
suspect data is available, but the amount of offender data is 
relatively small. We therefore conducted tests of two 
conditions using all the available suspect data, but simulating 
having different amounts of offender data. 

The suspect models were built using all the data available 
in the A and the C recordings (range 84 to 131 s, median 
110 s). Two sets of suspect test data were analyzed. The first 
set consisted of the first 20 s of speech from each of the B and 
D recordings in the evaluation database, and the second set 
consisted of the next 40 s of speech from each of the B and D 
recordings (there was no overlap between these two sets).  

4. Results 

4.1. Raw results 

Cllr values for test sets AB and CD for the 20 s and 40 s tests 
are given in Table 3 (only lower-numbered suspect to higher-
numbered offender comparisons are included for different-
speaker comparisons). Tippett plots are provided in Figures 2 
and 3. 

Although the Cllr values for the tests using 40 s of 
offender data were slightly less than for those using 20 s of 
offender data, the differences were not substantial – the 
differences between the AB and the CD pairs were greater 
than the differences between the 20 s and 40 s pairs, and the 
division of the former was arbitrary.  

Table 3: Cllr values for test sets AB and CD 

 Test set 
Duration AB CD 

20 s 0.282 0.250 
40 s 0.279 0.226 

 

4.2. Accuracy results 

Cllr values for the within-comparison mean LRs, ݔҧ௜, for the 
20 s and 40 s tests were, to three figures, both 0.150.  

4.3. Precision results (non-parametric procedure) 

Figures 4 and 5 provide scatter plots of the deviation-from-
mean, ݕ௜௝, values (y axis) against the within-comparison 
mean, ݔҧ௜, values (x axis), for the 20 s tests and 40 s tests 
respectively (red dots represent different-speaker 
comparisons, and blue dots same-speaker comparisons). The 
plots also include the 95% CI estimated at each ݔҧ௜ value 
(green lines). The means of these estimates are given in Table 
4. The estimated 95% CI for the tests using more data was 
generally narrower than for the tests using less data.  

Figures 6 and 7 provide Tippett plots of the mean within-
comparison LRs (solid lines) and their corresponding 95% 
CIs (dashed lines to the left and right of the solid lines) for the 
20 s and 40 s tests respectively. As might be expected given 
the small differences in the accuracy and precision results 
reported above, the two Tippett plots are visually almost 
identical.  
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Figure 2: Tippett plot of LR values from test sets AB 
(sold lines) and CD (dashed lines) for 20 s of 

questioned-voice data. 

 
Figure 3: Tippett plot of LR values from test sets AB (sold 
lines) and CD (dashed lines) for 40 s of questioned-voice 

data. 

 
Figure 4: Scatter plot of deviation-from-mean values 

against within-comparison mean values for 20 s of 
questioned-voice data. 

 
Figure 5: Scatter plot of deviation-from-mean values 

against within-comparison mean values for 40 s of 
questioned-voice data. 

 
Figure 6: Tippett plot of within-comparison mean log-LR 

values from 20 s of questioned-voice data. 

 
Figure 7: Tippett plot of within-comparison mean log-

LR values from 40 s of questioned-voice data.  
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4.4. Precision results (parametric procedure) 

Visual inspection of the scatter plots in Figures 4 and 5, and 
of running histograms (not shown), suggest that the 
assumptions of homoscedasticity and normality are not 
unreasonable for the deviation-from-mean log-LR values, ݕ௜௝,  
output by this system. The parametric estimates of the 95% 
CIs are given in Table 4. The estimated 95% CI for the tests 
using 40 s of data was narrower than for the tests using 20 s of 
data.  

Table 4: Estimates of the 95% CIs (for the non-
parametric procedure the value reported is the mean of 

the CI values estimated at each of the ݔҧ௜ values). 

 Procedure 
Test data 
duration 

non-
parametric  

parametric 

20 s ±1.56 ±1.69 
40 s ±1.52 ±1.63 

 

5. Discussion 

5.1. Comparison of using 40 s versus 20 s of questioned-
voice data 

When 40 s as opposed to 20 s of questioned-voice data were 
used there was no substantial difference in the accuracy of the 
results (§4.2); however, there was a slight increase in 
precision (decrease in the CI, §4.3–4.4). The primary purpose 
of the present paper is to explain procedures for calculating 
precision rather than examine the effect of using different 
amounts of questioned-voice data. To properly explore the 
latter, additional testing would be necessary using more data 
and/or randomization tests or bootstrapping. 

5.2. The importance of presenting information about 
precision 

To illustrate the importance of presenting information about 
precision, imagine that in casework, for which the 40 s system 
described in the present paper is appropriate, an LR for the 
comparison of the known- and questioned-voice recordings of 
100 in favor of the same-speaker hypothesis is obtained. 

Without having calculated an estimate of precision, the 
forensic scientist would simply report that one would be 100 
times more likely to observe the measured acoustic 
differences between the known- and questioned-voice 
recordings under the hypothesis that the speaker on the 
questioned-voice recordings was the accused, than under the 
hypothesis that it was someone other than the accused.  

When an estimate of precision is available, the forensic 
scientist can report that one would be 100 times more likely to 
observe the measured acoustic differences between the 
known- and questioned-voice recordings under the hypothesis 
that the speaker on the questioned-voice recordings was the 
accused, than under the hypothesis that it was someone other 
than the accused. In addition, they can report that, based on 
tests of the system, they are 95% certain that one would be at 
least 6.82 times (approximately 7 times) more likely and not 
more than 1,452 times (approximately 1,450 times) more 
likely to observe these acoustic differences given the same-
speaker hypothesis than given the different-speaker 

hypothesis (log10(LR) of 2±1.166 taken from the results of the 
non-parametric procedure, see §2.2 and Figure 1).  

Given this information about the precision of the forensic-
comparison-system, the trier of fact may, for example, decide 
to use a conservative value (i.e., a value closer to an LR of 
one), and use a value of say 10, near the bottom of the 95% 
CI, rather than the raw calculated value of 100. Whereas the 
trier of fact is permitted to make a decision of this sort, it 
would be inappropriate for the forensic scientist to do so and, 
say, only report an LR value of 10 to the trier of fact. This 
would be stepping beyond an objective-as-possible scientific 
evaluation of the evidence, and usurping part of the rôle of the 
trier of fact. 

Although the LR of 100 would still be the forensic 
scientist’s best single-valued estimate of the strength of 
evidence, having estimated the precision of the system, it 
would also be inappropriate for them to simply report the raw 
LR value of 100. Rather, the rôle of the forensic scientist 
should be to provide the trier of fact with all the relevant 
information about the results of the analysis of the voice 
recordings, and the performance of the forensic-comparison 
system, including its precision at the activity level, so as to 
assist the trier of fact in coming to a maximally informed 
decision. 
 

 
Figure 8: Histogram of deviation-from-mean 

log10(LR) values for the 500 nearest neighbors to 
log10(LR) = 2 using 40 s of questioned-voice data 

(blue bars). Estimated 95% CI from non-parametric 
procedure (red lines).  

To help the trier of fact understand the 95% CI, the 
forensic scientist could present a histogram of the results from 
the k nearest neighbors, see Figure 8. Rather than an x axis 
labeled in log LRs, an x axis labeled in LRs would likely be 
more easily understood by the trier of fact, given that the trier 
of fact cannot be assumed to have a background in statistics 
etc. Whereas, if only supplied with a CI, a statistically 
sophisticated person may mistakenly assume a normal 
distribution, a statistically naïve person may mistakenly 
assume a uniform distribution.  

Note that, unlike the local-linear-regression procedure 
used to calculate the non-parametric estimate of the CI, the 
histogram does not take account of heteroscedasticity over the 
range of values covered by the k nearest neighbors (compare 
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Figure 8 with Figure 1 – in Figure 8 the x dimension of Figure 
1 has been collapsed and the folding of the y dimension about 
log10(LR) = 0 has been undone). The proportion of the area of 
the histogram bars beyond the CI lines may therefore not be 
equal to α, and the histogram should only be used as a rough 
guide to the shape of the distribution of the deviation-from-
mean values in the vicinity of ݔ଴. This would not be a concern 
if the parametric procedure were deemed appropriate and 
applied. 

5.3. Separating accuracy and precision 

At the beginning of the present paper (§1.2), Cllr was 
described as a measure of accuracy. Theoretically this is an 
appropriate characterization, and also practically when it is 
based on ݔҧ௜ values, i.e., on the within-group means calculated 
using multiple independent measures comparing the same pair 
of speakers / comparing the same speaker with themselves, as 
reported in §4.2. However, when Cllr is calculated using a 
single set of comparison values, as reported in §4.1, it is 
actually a goodness metric which combines accuracy and 
precision, with the relative contribution of each being 
unknown. When multiple samples are available for each 
comparison pair, it is possible to distinguish the contribution 
of accuracy and the contribution of precision. As the number 
of samples increases, so does the ability to separately estimate 
each of accuracy and precision. 

5.4. Technical issues related to the non-parametric 
procedure 

The non-parametric estimate of the CI will itself be more 
accurate and reliable in more densely populated regions of the ݔҧ௜ by ݕ௜௝ space than in less densely populated regions (see 
Figures 4 and 5). Since there are many fewer same-speaker 
comparisons than different-speaker comparisons and only two 
independent test pairs for each same-speaker comparison, as 
compared to four for each different-speaker comparison, and 
the positive log-LR region is dominated by same-speaker 
results, the positive log-LR region is relatively sparsely 
populated. Where sampling is sparse, the size of the CI is 
likely to be underestimated because few extreme values are 
likely to be generated. Unlike the parametric system which 
uses a t distribution which is wider for smaller degrees of 
freedom, the non-parametric procedure does not take account 
of this phenomenon. 

Changing the value of k, the number of nearest neighbors, 
also affects the accuracy and precision of the estimate of the 
CI. A small value of k fits the sample data more closely 
(lower bias) and results in a more jagged line in the scatter 
and Tippett plots (higher variance). For use in casework, it 
would be important to choose and fix the value of k before 
calculating the LR and the CI estimate for the real suspect and 
offender samples.  

It may be desirable to find a procedure which produces 
smoother, less jagged, results. One possibility could be to find 
the most extreme 2α points at each ݔҧ௜ value over the entire ݔҧ௜ 
range, then fit a spline to the superset of these points.  

5.5. Desirability of using the parametric procedure 

If the assumptions of normality and homoscedasticity are 
reasonable, then it would be advantageous to use the 
parametric procedure rather than the non-parametric 
procedure. The latter is a more standard statistical procedure 

and is also easier to calculate. Also, when there are only two 
recordings per speaker available, only different-speaker 
results can be used to estimate a CI, but, if the assumptions 
for the parametric procedure hold, the parametric estimate of 
the CI will also be applicable to same-speaker results.  

Assumptions of homoscedasticity and normality appear to 
be reasonable for the output of the GMM-UBM system used 
in the present paper, and also appear to be reasonable for the 
output of the GMM-UBM system, but not the multivariate-
kernel-density system, reported in [27]. If the assumptions 
hold for GMM-UBM systems in general, then this will greatly 
simplify calculating and reporting the precision of GMM-
UBM forensic-comparison systems. 

6. Conclusion 
In addition to accuracy, precision is an important aspect of the 
performance of a forensic-comparison system. Not reporting 
the estimated precision for a likelihood ratio calculated from 
known and questioned samples could mislead the trier of fact 
into giving a different weighting to the evidence than would 
be the case if they were aware of the activity-level precision 
limitations of the forensic-comparison system. 

Results of the experiment reported in the present paper 
suggest that even if an increase in the length of questioned-
voice samples does not lead to an improvement in system 
accuracy, it could lead to an improvement in precision. 
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