A New Paradigm for the Evaluation of Forensic Evidence

Geoffrey Stewart Morrison

\[
\frac{p(E|H_p)}{p(E|H_d)}
\]
Abstract

• In Europe there has been a great deal of concern about the logically correct way to evaluate the strength of forensic evidence. The 2015 European Network of Forensic Science Institutes’ Guideline for Evaluative Reporting in Forensic Science recommends the use of the likelihood-ratio framework. In the United States there has been a great deal of concern about the validity and reliability of forensic science, as stressed in the 2009 National Research Council Report to Congress. In England & Wales the Forensic Science Regulator’s 2014 Codes of Practice and Conduct require validation of methods in all branches of forensic science to be demonstrated. Additional current concerns include the need for transparency, as expressed in the 2010 England & Wales Court of Appeal ruling in R v T and the multiple published responses to that ruling, and the need to adopt procedures which minimize the potential for cognitive bias, as expressed in the 2012 US National Institute of Science and Technology and National Institute of Justice report on human factors in latent fingerprint analysis.

• For a number of years, the presenter and his colleagues have been developing a description of a new paradigm for the evaluation of forensic evidence which addresses the concerns from both sides of the Atlantic, and which is applicable across all branches of forensic science. The paradigm includes: the calculation of likelihood ratios using relevant data, quantitative measurements, and statistical models; and empirical testing of the validity and reliability under conditions reflecting those of the case under investigation. This presentation provides an overview of the paradigm, and reviews the presenter’s work in this field. The presentation also includes an example description of the implementation of the paradigm in the context of a real forensic case.

• Dr Morrison is an independent forensic consultant based in Vancouver, British Columbia, Canada. He is an Adjunct Professor at the Department of Linguistics, University of Alberta. He has previously been Scientific Counsel, Office of Legal Affairs, INTERPOL General Secretariat; Director of the Forensic Voice Comparison Laboratory, School of Electrical Engineering & Telecommunications, University of New South Wales; a Subject Editor for the journal *Speech Communication*; and Chair of the Forensic Acoustics Subcommittee of the Acoustical Society of America. He has authored more than 50 refereed and invited academic publications, more than 30 in forensic science, and has conducted research in collaboration with police services in Australia and in Europe. He has worked on forensic casework in Australia and in the United States, and has worked at the behest of both the prosecution and the defense. In 2015 he advised defense counsel in a US Federal Court *Daubert* hearing on the admissibility of a forensic voice comparison analysis proffered by the prosecution.
CONCERNS

- **Logically correct framework for evaluation of forensic evidence**
 - ENFSI Guideline for Evaluative Reporting 2015

- **But what is the warrant for the opinion expressed? Where do the numbers come from?**
 - Risinger at ICFIS 2011

- **Demonstrate validity and reliability**

- **Transparency**
 - *R v T* 2010 and responses

- **Reduce potential for cognitive bias**
 - NIST/NIJ Human Factors in Latent Fingerprint Analysis 2012

- **Communicate strength of evidence to trier of fact**
PARADIGM

- **Use of the likelihood-ratio framework for the evaluation of forensic evidence**
 - logically correct

- **Use of relevant data, quantitative measurements, and statistical models**
 - transparent and replicable
 - relatively robust to cognitive bias

- **Empirical testing of validity and reliability under conditions reflecting those of the case under investigation**
 - only way to know how well it works
PARADIGM SHIFT
PARADIGM SHIFT in Forensic Speech Science

- **Forensic speech science**
 - continuously valued variables
 - intrinsic variability at the source
 - distortion and degradation via transfer mechanism

- forensic voice comparison
 - Who was speaking?*

- disputed utterance analysis
 - What was said?*

*question that the trier of fact wants help in answering
PARADIGM SHIFT in Forensic Speech Science

INTERPOL SURVEY OF THE USE OF SPEAKER IDENTIFICATION BY LAW ENFORCEMENT AGENCIES

Approach
- Auditory
- (auditory) spectrographic
- Auditory acoustic phonetic
- Acoustic phonetic statistical
- Human supervised automatic
- Fully automatic

Framework
- Identification / exclusion / inconclusive
- Numeric posterior probability
- Numeric likelihood ratio
- Verbal posterior probability
- Verbal likelihood ratio
- UK framework

UNITED STATES DISTRICT COURT
EASTERN DISTRICT OF NEW YORK

UNITED STATES OF AMERICA, 12-CR-661 (SLT)

-against-

United States Courthouse
Brooklyn, New York

AHMED et al,
Defendant.

April 24, 2015
10:00 a.m.
PARADIGM

- **Use of likelihood ratio framework**

 - Logically correct framework for evaluation of evidence.

 - Specific prosecution and defence hypotheses adopted by forensic scientist must be explained to judge at admissibility hearing / trier of fact at trial.

 probability of obtaining the acoustic properties on the offender recording if it were produced by the suspect versus if it were produced by some other speaker selected at random from the relevant population

- Is the question appropriate?

- Question must be understood in order to understand answer.
Likelihood ratios

- The hair at the crime scene is blond
- The suspect has blond hair
Likelihood ratios

- The hair at the crime scene is blond
- The suspect has blond hair

- Does that mean that the suspect and offender are the same person?
- Does it mean that it is highly probable that the suspect and offender are the same person?
Likelihood ratios

- The hair at the crime scene is blond
- The suspect has blond hair

\[
\frac{p(\text{blond hair at crime scene} \mid \text{suspect is source})}{p(\text{blond hair at crime scene} \mid \text{someone else is source})}
\]

- Someone else selected at random from the relevant population
- What is the relevant population?
Likelihood ratios

- The hair at the crime scene is blond
- The suspect has blond hair

\[
\frac{p(\text{blond hair at crime scene} \mid \text{suspect is source})}{p(\text{blond hair at crime scene} \mid \text{someone else is source})}
\]

- Someone else selected at random from the relevant population
- What is the relevant population?
 - Stockholm
 - Beijing
 - Orlando
Likelihood ratios

- Adopted as standard for evaluation of DNA evidence in mid 1990’s
Likelihood ratios

- Association of Forensic Science Providers (2009)
 - *Standards for the formulation of evaluative forensic science expert opinion*

- 31 signatories [from Aitken to Zadora] (2011)
 - *Expressing evaluative opinions: A position statement*

 - *Guideline for evaluative reporting in forensic science*
The likelihood-ratio framework and forensic evidence in court: a response to *R v T*

Geoffrey Stewart Morrison*

Director, Forensic Voice Comparison Laboratory, School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, Australia

Refining the relevant population in forensic voice comparison – A response to Hicks et alii (2015)
The importance of distinguishing information from evidence/observations when formulating propositions

Geoffrey Stewart Morrison, Ewald Enzinger*, Cuiling Zhang
Likelihood ratios

wrong training set
wrong test set

wrong training set
right test set

right training set
right test set

95% Australian English
5% Mandarin Chinese

100% Mandarin Chinese

Refining the relevant population in forensic voice comparison – A response to Hicks et alii (2015)
The importance of distinguishing information from evidence/observations when formulating propositions
Geoffrey Stewart Morrison, Ewald Enzinger, Cuiling Zhang
PARADIGM

• Calculation of numeric likelihood ratios using relevant data, quantitative measurements, and statistical models

• Transparent and replicable

• Sample from the relevant population specified in the defence hypothesis. Sufficiently representative?

• Data reflective of conditions of suspect and offender samples. Sufficiently reflective?

• Report output of statistical model, keep subjective elements far from the conclusion. Do not report conclusions which are primarily or directly based on subjective judgement.
Calculation of numeric likelihood ratios

Forensic strength of evidence statements should preferably be likelihood ratios calculated using relevant data, quantitative measurements, and statistical models – a response to Lennard (2013)

Fingerprint identification: how far have we come?

Geoffrey Stewart Morrisona,* and Reinoud D. Stoelb

aForensic Voice Comparison Laboratory, School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, Australia; bNetherlands Forensic Institute, The Hague, The Netherlands
Protocol for the collection of databases of recordings for forensic-voice-comparison research and practice

Geoffrey Stewart Morrisona,*, Philip Roseb and Cuiling Zhanga,c

aForensic Voice Comparison Laboratory, School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, Australia; bSchool of Language Studies, Australian National University, Canberra, Australia; cDepartment of Forensic Science and Technology, China Criminal Police University, Shenyang, China
Calculation of numeric likelihood ratios

Likelihood-ratio forensic voice comparison using parametric representations of the formant trajectories of diphthongs

Geoffrey Stewart Morrison
School of Language Studies, Australian National University, Canberra, Australian Capital Territory 0200, Australia

Reliability of human-supervised formant-trajectory measurement for forensic voice comparison

Cuiling Zhang
Department of Forensic Science & Technology, China Criminal Police University, 83 Tianan Street, Huaihe District, Shenyang L10524, China
cuilingzhang@forensic-voice-comparison.net

Geoffrey Stewart Morrison, Felipe Ochoa, and Ewald Enzinger
Forensic Voice Comparison Laboratory, School of Electrical Engineering & Telecommunications, University of New South Wales, UNSW Sydney, New South Wales 2052, Australia
greg@morrisons@forensic-voice-comparison.net, f.ochoa@student.unsw.edu.au, c.enzinger@student.unsw.edu.au

Effects of telephone transmission on the performance of formant-trajectory-based forensic voice comparison – Female voices

Cuiling Zhang, Geoffrey Stewart Morrison, Ewald Enzinger, Felipe Ochoa

* Department of Forensic Science & Technology, China Criminal Police University, 83 Tianan Street, Huaihe District, Shenyang, Liaoning 110524, China

** Forensic Voice Comparison Laboratory, School of Electrical Engineering & Telecommunications, University of New South Wales, UNSW Sydney, NSW 2052, Australia
Calculation of numeric likelihood ratios

A comparison of procedures for the calculation of forensic likelihood ratios from acoustic–phonetic data: Multivariate kernel density (MVKD) versus Gaussian mixture model–universal background model (GMM–UBM)

Geoffrey Stewart Morrison

School of Language Studies, Australian National University, Canberra, ACT 0200, Australia
Forensic Voice Comparison Laboratory, School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia

Likelihood ratio calculation for a disputed-utterance analysis with limited available data

Geoffrey Stewart Morrison a,b, * Jonas Lindh b, James M Curran b

a Forensic Voice Comparison Laboratory, School of Electrical Engineering & Telecommunications, University of New South Wales, UNSW Sydney, NSW 2052, Australia
b Division of Speech and Language Pathology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432 35640 W, Gothenburg, Sweden

Performance of i-vector models under conditions reflecting those of a real forensic voice comparison case

Ewald Enzinger a,b, Geoffrey Stewart Morrison a,b, *, Julien Epps a

a School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, NSW, Australia
b Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria

Forensic likelihood ratios should not be based on similarity scores or difference scores

Geoffrey Stewart Morrison
Ewald Enzinger
Calculation of numeric likelihood ratios

Forensic likelihood ratios should not be based on similarity scores or difference scores

Geoffrey Stewart Morrison
Ewald Enzinger
Calculation of numeric likelihood ratios

Performance of i-vector models under conditions reflecting those of a real forensic voice comparison case

Ewald Enzingera,b,d*, Geoffrey Stewart Morrisona,c, Julien Eppsa,d

aSchool of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, NSW, Australia
bAcoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
cDepartment of Linguistics, University of Alberta, Edmonton, Alberta, Canada
dNational ICT Australia (NICTA), Australian Technology Park, Sydney, NSW, Australia
PARADIGM

• **Empirical testing of validity and reliability under conditions reflecting those of the case under investigation**

 • Performance under different conditions may be very different.

 • Sample from the relevant population specified in the defence hypothesis. Sufficiently representative?

 • Data reflective of conditions of suspect and offender samples. Sufficiently reflective?

 • Are the number of test trials sufficient?

 • Test the system actually employed, including human operator.

 • Metrics of system performance should be compatible with the likelihood ratio framework.
Testing should be method agnostic

1,000,000

To be, or not to be
Testing should be method agnostic

To be, or not to be
Validity and Reliability

- The National Research Council report to Congress on *Strengthening Forensic Science in the United States* (2009) urged that procedures be adopted which include:

 - “quantifiable measures of the reliability and accuracy of forensic analyses” (p. 23)

 - “the reporting of a measurement with an interval that has a high probability of containing the true value” (p. 121)

 - “the conducting of validation studies of the performance of a forensic procedure” (p. 121)
Validity and Reliability

• The Forensic Science Regulator of England & Wales’ *Codes of Practice and Conduct* (2014) require:

 “all technical methods and procedures used by a provider shall be validated.” (§20.1.1)

 “Even where a method is considered standard and is in widespread use, validation will still need to be demonstrated.” (§20.1.3)

 “validation shall be carried out using simulated casework material ... and ... where appropriate, with actual casework material” (§20.7.3)

 “demonstrate that they can provide consistent, reproducible, valid and reliable results” (§20.9.1)
Validity and Reliability

Special issue on measuring and reporting the precision of forensic likelihood ratios
Examples of casework conducted within the new paradigm

Empirically testing the performance of an acoustic-phonetic approach to forensic voice comparison under conditions reflecting those of a real case – R v Ly
Ewald Enzinger a,b,c,*, Geoffrey Stewart Morrison a,d

Use of relevant data, quantitative measurements, and statistical models to calculate a likelihood ratio for a Chinese forensic voice comparison case involving two sisters
Cuiling Zhang1,2, Geoffrey Stewart Morrison3,4,*, Ewald Enzinger3

Mismatched distances from speakers to telephone in a forensic-voice-comparison case
Ewald Enzinger a,b,c,*, Geoffrey Stewart Morrison a,d

A demonstration of the application of the new paradigm for the evaluation of forensic evidence under conditions reflecting those of a real forensic-voice-comparison case
Ewald Enzinger a,b,c,*, Geoffrey Stewart Morrison a,d, Felipe Ochoa3

1School of Criminal Investigation, Southwest University of Political Science & Law, Chongqing, China
2Chongqing Institutes of Higher Education Forensic Technology Research Centre, Chongqing, China
3Morrison & Enzinger, Independent Forensic Consultants, Vancouver, British Columbia, Canada & Corvallis, Oregon, USA
4Department of Linguistics, University of Alberta, Edmonton, Alberta, Canada
An example of casework conducted within the new paradigm

with thanks to my former doctoral student
Ewald Enzinger
Real Case

- **Offender recording**
 Telephone call made to a financial institution’s call centre
 – landline
 – call centre background noise (babble, typing)
 – saved in a compressed format
 – 46 seconds net speech

- **Suspect recording**
 Police interview
 – reverberation
 – ventilation system noise
 – saved in a compressed format
Strict chronological order for analysis

- Determine prosecution and defence hypotheses to adopt
 - includes defining the relevant population

- Obtain data representative of the relevant population, and reflective of the conditions of the suspect and offender recordings
 - split these into training data and test data

- Train a forensic voice comparison system

- Test the performance of the forensic voice comparison system

- Calculate a likelihood ratio for the comparison of the suspect and offender recording

Document all decisions made, actions taken, and results obtained at each stage.

Do not at any time move back to an earlier stage.
Defence hypothesis and relevant population adopted

- Relevant population chosen based on offender recording

 Obvious that the speaker was

 – adult male

 – speaking Australian English

- We had previously invested in collecting a database of voice recordings which included:

 – 231 adult male Australian English speakers

 – high-quality recordings

 – speaking styles:

 – information exchange over the telephone

 – simulated police interview

 – multiple non-contemporaneous recordings in each speaking style
Simulation of offender-recording conditions

\[x_r[i] \rightarrow 8\text{kHz} \rightarrow \text{G.723.1 compression/decompression} \rightarrow \text{scaling } \alpha = \sqrt{\frac{e_s}{e_r}} \rightarrow y_r[i] \]

\[\text{offender recording noise} \rightarrow x_n[i] \]
Simulation of suspect-recording conditions

\[x_r[i] \rightarrow \text{scaling} \quad \alpha = \sqrt{\frac{e_s}{e_r}} \quad \rightarrow \quad y_r[i] \]

\[\text{MPEG-1 layer 2 compression/decompression} \]

\[x_n[i] \rightarrow \text{suspect recording noise} \]
Selection of samples representative of the relevant population

- We were only asked to compare the suspect and offender recordings because a police officer had listened to them and thought they were sufficiently similar sounding that it was worth submitting them for forensic analysis.

- Listeners similar to the police officer selected the speakers from the database to include in the sample of the relevant population:
 - same gender
 - approximately the same age
 - same linguistic background (monolingual Australian English speakers)

- Listened to offender recording and to suspect-condition database recordings.
Selection of samples representative of the relevant population

Does the speaker on recording B sound sufficiently similar to the speaker on recording A (offender recording) that you would submit recording B for forensic comparison with recording A?

[Buttons: YES, NO]
Selection of samples representative of the relevant population

The number of speakers selected by N or more listeners.

<table>
<thead>
<tr>
<th>number of listeners, N</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of speakers selected by N or more listeners</td>
<td>16</td>
<td>24</td>
<td>34</td>
<td>42</td>
<td>51</td>
<td>75</td>
<td>100</td>
<td>128</td>
<td>166</td>
<td>195</td>
<td>216</td>
</tr>
</tbody>
</table>

- Training data: 423 recordings from 105 speakers
- Test data: 222 recordings from 61 speakers
- Test protocol included 9669 comparison pairs
Quantitative acoustic measurements

- mel frequency cepstral coefficients + deltas

- Suspect-condition and offender-conditions recordings made same durations as the actual suspect and offender recordings (in MFCC frames)
Quantitative acoustic measurements
Statistical models

- **GMM-UBM**
 - suspect model trained using **suspect** data
 - population model (UBM) trained using **suspect-condition** data from **sample of the population**
 - same mismatch with **offender** data

- Score to likelihood ratio conversion (logistic regression)
 - trained using pairs of recordings from **sample of the population**, one in **suspect condition**, the other in **offender condition**
 - same-speaker pairs
 - different-speaker pairs

1. **Training the background model**

 - data from suspect-condition recordings of speakers in the background set
 - Expectation maximization
 - UBM

2. **Training a suspect model**

 - data from suspect sample
 - MAP adaptation
 - suspect model

3. **Score calculation**

 - suspect model
 - $p(x_t|\lambda_{\text{suspect}})$
 - $p(x_t|\lambda_{\text{background}})$
 - $1 + \frac{1}{T} \sum_{t=1}^{T} \log(LR_t)$
 - score

4. **Score to likelihood ratio transformation (calibration)**

 - development scores from same-speaker comparisons
 - development scores from different-speaker comparisons
 - score
 - LR
 - suspect versus offender conditions
Statistical models

- Mismatch compensation techniques
 - feature warping
 - probabilistic feature mapping
 - canonical linear discriminant functions

![Graph showing empirical and normal cumulative distribution functions (CDFs) with percentile and warping values.]
Test results

- Test data:
 - pairs of recordings from sample of the relevant population, one in suspect condition, the other in offender condition
 - same-speaker pairs
 - different-speaker pairs

- C_{llr}-pooled: 0.423
- C_{llr}-mean: 0.344
- 95% CI: ±0.95
Comparison of suspect and offender recordings

- $LR: 343$
- $\log_{10} LR: 2.54$
- $98\% CI: \pm 1.13 \ [25 .. 4599]$
- Probability of equal or stronger misleading evidence: 0.00033
Conclusions

- Based on our calculations we estimate that the probability of obtaining the acoustic properties of the speech on the offender recording is approximately 350 times greater had it been produced by the defendant than had it been produced by some other speaker selected at random from the relevant population.

- Our best estimate for the strength of the evidence is a likelihood ratio of 343, and based on tests of our system we are 99% certain that the probability of obtaining the acoustic properties of the offender sample is at least 25 times greater had it been produced by the defendant than had it been produced by some other speaker selected at random from the relevant population.

- Based on tests of our system, we estimated that the probability of observing a likelihood ratio of equal to or greater than 343 if the offender sample were produced by a speaker selected at random from the relevant population is less than four in ten thousand (0.00033).
Example: The evidence is 4 time more likely given the same-speaker hypothesis than given the different-speaker hypothesis.

If before you believed that the different-speaker hypothesis was 2 times more probable than the same-speaker hypotheses, now you believe that the same-speaker hypothesis is 2 times more probable than the different-speaker hypothesis.
Thank You

http://geoff-morrison.net/
http://forensic-evaluation.net/